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Abstract

lon beam etching (IBE) of sputtered Pbg£x, Tig.46)Os has been performed using pure Ar gas. We have studied the damages induced by the
etching process on the microstructural and electrical properties. In a previous study, we had demonstrated the influence of etching parameters
on the extent of the degradations. We evaluate now the influence of the microstructure (grain size) of the PZT thin film. Indeed, we can obtain
sputtered PZT thin films with small (<1fm) and large $1.5um) grain size. In the first part, we compare the properties of these two types

of PZT thin films before etching. In the second part, we compare the results obtained after etching. The properties (particularly the roughness
and the ferroelectric properties) of PZT films with large grain size appear to be more damaged after IBE.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction ence of the etching parameters (current density, acceleration
voltage) on the extent of the degradations has already been
Lead titano-zirconate (PZT) ferroelectric thin films have studied’ We have observed that not only the etching con-
developed a greatinterest for their applications in memory de- ditions but also the PZT microstructure could influence the
vices, and more recently in microelectromechanical systemsresults. So we have distinguished the two following cases: the
(MEMSs) because of their interesting piezoelectric properties. etching of PZT thin films having a grain size of several mi-
The patterning has become an essential element for PZT intecrometers, and the etching of films having a grain size lower
gration in devices. However this integration stage can induce than one micrometer. In this study, we compare the struc-
many defects, as well microstructural as electrical. So it is tural, microstructural and electrical properties of these PZT
very important today to understand more precisely the mech-thin films before and after etching.
anisms of degradations. Several techniques have been devel-
oped for patterning: wet chemical etchihimn beam etching
(IBE),? reactive ion etching (RIE}* electron cyclotronreso- 2. Experimental procedure
nance (ECR) etchingand inductively coupled plasma (ICP)
etching® The technique used in this study is the IBE (pure  Pb(Ziy.54 Tip.46)Os (PZT) thin films were deposited on
Ar beam). Indeed, the different etching parameters can beSi/SiO,/Ti/Pt substrates by rf magnetron sputtering. Pt and
adjusted independently and it allows to evaluate more easily Tilayers of 100 and 20 nm thick, respectively, were deposited
the influence of each one. Moreover, in the frame of PZT on SiGy/Si substrates by DC sputtering. The PZT sputtering
integration, this technique, essentially based on the physi-conditions are summarized diable 1 The PZT films were
cal bombardment, is efficient to etch structures composed ofannealed by conventional annealing at 625or 30 min to
different materials such as a Pt/PZT/Pt capacitor. The influ- form the perovskite phase.
lon beam etching of PZT was investigated by using Veeco
* Corresponding author. Tel.: +33 320436522. Microetch 3. This system was equipped with a Kaufman
E-mail addresscaroline.soyer@univ-valenciennes.fr (C. Soyer). type source and is described in the referehéegon ions
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Table 1

Sputtering parameters

Target composition PbO +0.54 753 0.46 TiO:
Gas Argon

Pressure (mTorr) 30

Power density (W/crf) 2.34

Temperature Unheated

[}
12 um

Fig. 1. AFM micrographs of PZT thin films with (a) a small grain size

were extracted by acceleration potential (typically between (<L.5nm) and (b) a large grain size (>1n).

0.6 and 1 kV). The current density can be adjusted by varying
the magnetic field, pressure, arc power and cathode emission.

A filament allows the positive charge of the ion beam to be 3 1 giructural and microstructural properties

neutralized. The sample holder is water-cooled.

X-ray diffractogramms allow the crystallographic orienta- Fig. 1compares the surface morphology of two samples.
tion to be controlled. The topography of unetched and etched Fig. 1a (5um x 5um) illustrates the topography of a sam-
PZT was characterized by atomic force microscopy (AFM). ple with grains having an average diameter inferior tar
Images in the contact mode AFM were carried out using a The roughnesgns (root mean square) is about 10-R0The

Park Scientific Instruments Autoprobe CP. diffractogramm of this sample is reportedFiy. 2a: we ob-
Pt top electrodes were sputtered through a shadow masksarye the (111) preferential orientation.

on etched PZT to determine electrical properties evolution. st the oppositeFig. 1b (15um x 15wm) shows the to-
They were then compared to the unetched samples to evalu'pography of a PZT film having large grains. The roughness

ate the extent of IBE effect. Capacity, @randC(V) were is now around 40-58. The (1 10) preferential orientation
performed using an impedance analyser HP4192A at a fre-is gemonstrated iffig. 2b. We are precise that in the two
quency of 10kHz and an alternative voltadg.= 100 mV. cases, the Pt bottom electrode is (11 1) preferentially ori-

The ferroelectric loop$(E) were measured using a stan-  gnied Fig. 2a and b). The difference measured concerning
dar_dized_ Radiant RT6000 system. The average coercive fieldy, roughness is in part due to the fact that the grain bound-
Ealis defined as|c"| + [Ec™[)/2. aries of large grains are slightly hollowed out before etching.
The origin of these various orientations has already been
discussed in literature. It is currently reported that the crys-
3. Microstructural and electrical properties of PZT tallographic orientation can be changed by a modification of
thin films the deposition temperature, the annealing temperature or the
lead content:® Some authors have observed a slight evolu-
After crystallization annealing, the PZT thin films can tion of the grain size with the change of orientation, but the
present different grain sizes: the grain diameter is ranging grain size remains lower thanuin.!! In no case they have
from 0.3um to a size greater thanpdn. These thin films observed a so large increase of the grain size.
have the same thickness (J.81), and we have not changed
the growth or crystallization parameters. So, this result is 3.2, Electrical properties
surprising. Moreover, different preferential crystallographic
orientations are linked to these various grain sizes. The PZT  The influence of the orientatiéf**and of the grain siZé
thin films having the smaller grain size (<Jun) are (111)  on the electrical properties has already been studied. But in
preferentially oriented, whereas the thin films having a grain these works, the modification of orientation and grain size
sizex> 1.5um are (110) preferentially oriented. are linked for the most part to a change of a parameter during
We have chosen to present in this study the structural andthe growth process. In our study, the dielectric and ferroelec-
electrical properties of these two types of PZT thin films.  tric properties of the two types of PZT thin films have been
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Fig. 2. X-ray diffractogramms of PZT thin films with (a) a small grain size (gidnD and (b) a large grain size (>1u%n).
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Fig. 3. P(E) hysteresis loop measured on PZT thin films with (a) a small grain size gst)%nd (b) a large grain size (>1u%n).

compared. We have observed that the permittivity of a film ness, a large decrease of the permittivity and a widening of
having a small grain size is higher: the value measured isthe ferroelectric loop.

superior to 1100, whereas it reaches only 850 for PZT films

having a large grain size. This result can be explained by 4.1. Structural and microstructural properties

two ways: an increase of the domain density when the grain

size decreases as it is the case for BaTe®@ramics'? and The crystallographic orientation keeps unchanged after
a modification of the nature or the mobility of the domains. etching. Itis not the case for the microstructure, as we can see
Fig. 3presents the hysteresis lodp&) performed on each  itin Fig. 4 Fig. 4a and b present the surface after etching for
sample. We observe that the shape is very different for the pzT with small and large grains respectively. For PZT films
two PZT films. When we apply an electrical field superior having a large grain size, the increase of the (300,&) is

to 150 kV/cm, the hysteresis loop is well saturated for large explained by the preferential etching of lead (PbO inclusions
grains PZT film Fig. 3a). For the sample having a smaller  are present in the grains and lead excess can be located at
grain size, the loop appears to be tilted, not saturated and thehe grain boundaries). Moreover, the microstructure of the
remnant polarization is very low. If we apply a sufficientelec- |ayer is also responsible: indeed, the presence of “cavity”
trical field on this film (about 400 kV/cm), we observe now  petween two grains induces an ion rebounding at this location,
the saturation of the loogi-{g. 3). The remnant polarization  and so a local increase of the etch rate. This results in the
is now about 1§.C/cn?, i.e. in the same order as for large preferential etching at the grain boundaries. For the other
grain PZT film. So, the PZT thin films having a small grain  film (Fig. 4a), the increase of theys is smaller (90_10@)_

size present good ferroelectric properties if the external field we do not observe the phenomenon of preferential etching.
applied is enough high. This result seems to confirm that the Thjs result is due to the microstructure of the PZT film: the
nature of the domains is probably not the same, or that thegrain boundaries have no relief before etching. The second

dynamic of the domains is modified, maybe in connection reason may be a difference of composition (particularly a lead
with a change of the strains due to the increase of the domainexcess less important).

density.
4.2. Electrical properties

4. Influence of ion beam etching on PZT properties The PZT thickness after etching is 0.7—Qu8.
We observe a large decrease of the permittivity after etch-
We compare in this part the properties of the types of ing. The decrease is quiet the same, whatever the grain size.
PZT thin film measured after ion beam etching. The etching The permittivity value is 650 and 500, respectively for PZT
parameters are summarizedTiable 2 The etch rate is the  film having small and large grain size. The decrease can be
same, whatever the PZT microstructure (about 40 nm/min). explained by different hypothesis: formation of microstruc-

We have already demonstrated that these etching conditionsural and electrical defects (accumulation of charges at the
induced large degradations of the microstructural and electri-

cal properties of PZT thin films with a large grain sizBar-

ticularly, we have observed an increase of the surface rough- A
400
Table 2 200
Etching parameters 0
Acceleration voltage (V) 800
Current density (mA/cif) 1
Pressure (mTorr) 0.2 @
Gas Argon ) ) o )
Temperature°C) >100 Fig. 4. AFM micrographs performed after IBE of PZT thin films with (a) a

small grain size (<1.pm) and (b) a large grain size (>Ju5n).
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Table 3 erential orientation. Moreover, the ferroelectric loop is very
Comparison of the degradations measured on PZT thin films with small and difficult to saturate. We think that a change of the domain
large grain size density, or the domain nature, can explain this result.

Small grain size Large grain size We have demonstrated that, afterion beam etching, the mi-
Pmax (%) —-12 -29 crostructural and electrical properties of PZT thin film with
Pra (%) —10 —14 large grains are more damaged. The grain boundaries zones
Ea (%) +84 +159

are in part responsible for this result. Indeed, a preferential
etching occurs at this location, and this favors the accumula-
domain walls and grain boundaries) in the surface atomic tion of defects during etching, and so the domain wall pining.
layers. They can be at the origin of the formation of a surface
layer that does not have the same properties as the PZT film,
and that may be not ferroelectric. Moreover, they can induce References
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